Copied to
clipboard

G = C4219D6order 192 = 26·3

17th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4219D6, C6.212+ 1+4, C4⋊C450D6, (C4×D4)⋊22S3, (D4×C12)⋊24C2, D6⋊D47C2, C22⋊C449D6, (C22×C4)⋊17D6, Dic3⋊D410C2, C232D621C2, C127D411C2, (C4×C12)⋊28C22, D6⋊C431C22, D6.D48C2, (C2×D4).221D6, C423S310C2, C427S328C2, C2.17(D4○D12), (C2×C6).104C24, C4⋊Dic310C22, (C2×Dic6)⋊7C22, C23.14D627C2, C2.22(D46D6), (C2×C12).162C23, Dic3⋊C433C22, (C22×C12)⋊11C22, Dic3.D49C2, C23.11D69C2, C32(C22.32C24), (C4×Dic3)⋊53C22, (C6×D4).308C22, (C2×D12).27C22, C22.6(C4○D12), C23.28D62C2, C6.D410C22, (C22×S3).38C23, (S3×C23).42C22, (C22×C6).174C23, C22.129(S3×C23), C23.111(C22×S3), (C2×Dic3).45C23, (C22×Dic3).99C22, C4⋊C4⋊S38C2, (C2×D6⋊C4)⋊35C2, (C4×C3⋊D4)⋊46C2, (S3×C2×C4)⋊49C22, C6.46(C2×C4○D4), (C3×C4⋊C4)⋊62C22, C2.53(C2×C4○D12), (C2×C3⋊D4)⋊5C22, (C2×C6).17(C4○D4), (C3×C22⋊C4)⋊58C22, (C2×C4).162(C22×S3), SmallGroup(192,1119)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4219D6
C1C3C6C2×C6C22×S3S3×C23C2×D6⋊C4 — C4219D6
C3C2×C6 — C4219D6
C1C22C4×D4

Generators and relations for C4219D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 744 in 250 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C2×C22⋊C4, C4×D4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C22.32C24, C427S3, C423S3, Dic3.D4, D6⋊D4, Dic3⋊D4, C23.11D6, D6.D4, C4⋊C4⋊S3, C2×D6⋊C4, C4×C3⋊D4, C23.28D6, C127D4, C232D6, C23.14D6, D4×C12, C4219D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, C4○D12, S3×C23, C22.32C24, C2×C4○D12, D46D6, D4○D12, C4219D6

Smallest permutation representation of C4219D6
On 48 points
Generators in S48
(1 39 19 42)(2 37 20 40)(3 41 21 38)(4 31 17 34)(5 35 18 32)(6 33 16 36)(7 25 10 28)(8 29 11 26)(9 27 12 30)(13 46 22 43)(14 44 23 47)(15 48 24 45)
(1 16 24 9)(2 17 22 7)(3 18 23 8)(4 13 10 20)(5 14 11 21)(6 15 12 19)(25 37 34 43)(26 38 35 44)(27 39 36 45)(28 40 31 46)(29 41 32 47)(30 42 33 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 20)(2 19)(3 21)(4 6)(7 9)(10 12)(13 24)(14 23)(15 22)(16 17)(25 33)(26 32)(27 31)(28 36)(29 35)(30 34)(37 45)(38 44)(39 43)(40 48)(41 47)(42 46)

G:=sub<Sym(48)| (1,39,19,42)(2,37,20,40)(3,41,21,38)(4,31,17,34)(5,35,18,32)(6,33,16,36)(7,25,10,28)(8,29,11,26)(9,27,12,30)(13,46,22,43)(14,44,23,47)(15,48,24,45), (1,16,24,9)(2,17,22,7)(3,18,23,8)(4,13,10,20)(5,14,11,21)(6,15,12,19)(25,37,34,43)(26,38,35,44)(27,39,36,45)(28,40,31,46)(29,41,32,47)(30,42,33,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20)(2,19)(3,21)(4,6)(7,9)(10,12)(13,24)(14,23)(15,22)(16,17)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46)>;

G:=Group( (1,39,19,42)(2,37,20,40)(3,41,21,38)(4,31,17,34)(5,35,18,32)(6,33,16,36)(7,25,10,28)(8,29,11,26)(9,27,12,30)(13,46,22,43)(14,44,23,47)(15,48,24,45), (1,16,24,9)(2,17,22,7)(3,18,23,8)(4,13,10,20)(5,14,11,21)(6,15,12,19)(25,37,34,43)(26,38,35,44)(27,39,36,45)(28,40,31,46)(29,41,32,47)(30,42,33,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,20)(2,19)(3,21)(4,6)(7,9)(10,12)(13,24)(14,23)(15,22)(16,17)(25,33)(26,32)(27,31)(28,36)(29,35)(30,34)(37,45)(38,44)(39,43)(40,48)(41,47)(42,46) );

G=PermutationGroup([[(1,39,19,42),(2,37,20,40),(3,41,21,38),(4,31,17,34),(5,35,18,32),(6,33,16,36),(7,25,10,28),(8,29,11,26),(9,27,12,30),(13,46,22,43),(14,44,23,47),(15,48,24,45)], [(1,16,24,9),(2,17,22,7),(3,18,23,8),(4,13,10,20),(5,14,11,21),(6,15,12,19),(25,37,34,43),(26,38,35,44),(27,39,36,45),(28,40,31,46),(29,41,32,47),(30,42,33,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,20),(2,19),(3,21),(4,6),(7,9),(10,12),(13,24),(14,23),(15,22),(16,17),(25,33),(26,32),(27,31),(28,36),(29,35),(30,34),(37,45),(38,44),(39,43),(40,48),(41,47),(42,46)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H···4L6A6B6C6D6E6F6G12A12B12C12D12E···12L
order1222222222344444444···466666661212121212···12
size11112241212122222244412···12222444422224···4

42 irreducible representations

dim111111111111111122222222444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6D6C4○D4C4○D122+ 1+4D46D6D4○D12
kernelC4219D6C427S3C423S3Dic3.D4D6⋊D4Dic3⋊D4C23.11D6D6.D4C4⋊C4⋊S3C2×D6⋊C4C4×C3⋊D4C23.28D6C127D4C232D6C23.14D6D4×C12C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4C2×C6C22C6C2C2
# reps111111111111111111212148222

Matrix representation of C4219D6 in GL6(𝔽13)

1190000
420000
0000120
0000012
001000
000100
,
800000
080000
0010600
007300
0000106
000073
,
110000
1200000
0001200
0011200
000001
0000121
,
12120000
010000
0012100
000100
0000121
000001

G:=sub<GL(6,GF(13))| [11,4,0,0,0,0,9,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,12,0,0],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,10,7,0,0,0,0,6,3,0,0,0,0,0,0,10,7,0,0,0,0,6,3],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C4219D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{19}D_6
% in TeX

G:=Group("C4^2:19D6");
// GroupNames label

G:=SmallGroup(192,1119);
// by ID

G=gap.SmallGroup(192,1119);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,100,675,570,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽